[Kelvin Wedge] ingredients Bessel and Hankel function
Hankel–Bessel Ladder Identities Claim. For suitable \(f_m(r)\) and \(k>0\), \[ \mathscr{H}_{m+1}\!\left[\left(\partial_r-\frac{m}{r}\right) f_m\right](k) =-\,k\,\hat{f}_m(k). \tag{1} \] Here \(\hat f_m(k):=\mathscr H_m[f_m](k)=\displaystyle\int_0^\infty f_m(r)\,J_m(kr)\,r\,dr\).
