Schedule 5 Nov 2024
  • IELTS writing -1
  • IELTS speaking -1
  • IELTS wordlist -3
  • water wave chapter 7 and part of chapter 8

Addressing the Disturbance Potential through the Application of Fourier Transforms and Complex Analysis

boundary conditions

  • free surface, the disturbance potential \(\varphi(x, y ; t)\)

\[ \begin{gathered} \frac{p}{\rho}+g \eta+\varphi_t+U \varphi_x+\frac{U^2}{2}=0 \quad \text{(7.4.1)}\\ \eta_t+U \eta_x-\varphi_y=0\quad \text{(7.4.2)} \end{gathered} \]

where \(y=0, t>0\)

  • bottom \(y=-h\)

\[ \varphi_y=0 \quad t \geq 0 \quad \text{(7.4.3)} \]

  • initial instant \(t=0\)

\[ \begin{aligned} & \varphi(x, y ; 0)=\eta(x ; 0)=p(x ; 0)=0 \quad \text{(7.4.4)}\\ & \varphi_t(x, y ; 0)=0\quad \text{(7.4.5)} \end{aligned} \]

  • set surface pressure \(p\) for \(t>0\)

\[ p=p(x), t>0 \quad \text{(7.4.6)} \]

  • at \(\infty\)
boundedness assumptions

At \(\infty\) we make no assumptions other than boundedness assumptions. We shall not formulate these boundedness conditions explicitly: instead, they are used implicitly in what follows because of the fact that Fourier transforms in \(x\) for \(-\infty<x<\infty\) are applied to \(\varphi\) and \(p\) and their derivatives. Of course, this means that these quantities must not only be bounded but also must tend to zero at $\infty$, and this seems reasonable since the initial conditions leave the water undisturbed at \(\infty\).

notes

Continuous functions that are Fourier transformable possess the following properties. 1. \(\int_{-\infty}^{\infty}|f(t)| d t<\infty\) 2. Behavior at Infinity. if \(f(t)\) does not vanish at infinity, there exists a positive constants \(\epsilon>0\) and an infinite interval \((\beta, \infty)\) where \(|f(t)|>t\), Consequently,

\[\int_\beta^{\infty}|f(t)| d t \rightarrow \infty\]

​ which can result in a divergent integral.

  1. Overall

    A continuous function that is Fourier transformable is guaranteed to

\[f(t)\left\{\begin{array}{l}\text { boundedness } \\\sim O(0) \text { as } t \rightarrow \infty\end{array}\right.\]

find a solution of \(\varphi\)

Using Equations \((7.4.1)\) to \((7.4.6)\) together, we eliminate \(\eta\) \[ \quad \varphi_{t t}+U^2 \varphi_{x x}+2 U \varphi_{x t}+g \varphi_y=-\frac{U}{\rho} p_x \quad\text{at } y=0 \tag{7.4.7} \] important: On surface \((y=0\) or \(y=\eta)\)

  • 2-D \[ u_y=\eta_t+u_x \eta_x \quad \eta=\eta(x) \]

  • 3-D \[ u_z=\eta_t+u_\perp \cdot \nabla_{\perp} \eta \quad \eta=\eta(x, y) \]

notes

take derivative \((7.4 .1)\) with respect to \(x\) and \(t\) respectively. we arrive at

\[\begin{array}{ll}\frac{p_x}{\rho}+g \eta_x+\varphi_{t x}+U\varphi_{x x}=0\quad \text{(N.7.4.1)}\\g \eta_t+\varphi_{t t}+U\varphi_{x t}=0 \quad \text{(N.7.4.2)}\end{array}\]

where \(p_t=0\), substituting (N.7.4.1) and (N.7.4.2) into (7.4.2), we derive

\[\begin{aligned}& -\frac{\varphi_{t t}+U \varphi_{x t}}{g}+U \frac{\varphi_{t x}+U \varphi_{x x}+\frac{p_x}{\rho}}{-g}-\varphi_y=0 \\& -\left(\varphi_{t t}+U \varphi_{x t}\right)-U \varphi_{t x}-U^2 \varphi_{x x}-\frac{p_x}{\rho} U-\varphi_y=0 \\& \Rightarrow \varphi_{t t}+2 U \varphi_{x t}+U^2 \varphi_{x x}+\varphi_y=-\frac{U}{\rho} p_x\end{aligned}\]

Applying the Fourier transform to \(\nabla^2 \varphi=0\) with respect to \(x\) to yield

\[ \bar{\varphi}_{y y}-s^2 \bar{\varphi}=0 \quad\text{(7.4.8)} \]

where \(\bar{\varphi}=F[\varphi] \quad \bar{\varphi}_{y y}=F\left[\varphi_{y y}\right]\), In the same way we have

\[ \bar{\varphi}_y=0, \text { at } y=-h\quad\text{(7.4.8-1)} \]

Hence, \(\bar{\varphi}\) must be of the form

\[ \bar{\varphi}(s, y ; t)=A(s ; t) \cosh s(y+h)\quad\text{(7.4.9)} \] for equation (7.4.8), we posit a solution of the form

\[ \bar{\varphi}=A(s ; t) \cosh s y \]

Referring to equation (7.4.8-1), the solution may be written as

\[ \bar{\varphi}=A(s ; t) \cosh s(y+h) \] perform a Fourier tranform on (7.4.7) yields (in terms of \(x\))

\[ \bar{\varphi}_{t t}+2 i s U \bar{\varphi}_t+g \bar{\varphi}_y-U^2 s^2 \bar{\varphi}=-\frac{i s U}{\rho} \bar{p} \quad \text { at } y=0 \]

notes

The general solution to a non-homogeneous ordinary differential equation (ODE) is obtained by adding the general solution of the corresponding homogeneous ODE to a particular solution of the non-homogeneous ODE. Specifically, consider a non-homogeneous linear ODE of the form: \[L[y]=g(x)\]

where \(L\) is a linear differential operator, \(y\) is the unknown function, and \(g(x)\) is the non-homogeneous term. The general solution \(y\) to this equation can be expressed as:

\[y=y_h+y_p\]

where:

  • \(y_h\) is the general solution to the corresponding homogeneous ODE \(L[y]=0\), which encompasses all possible solutions to the homogeneous equation.
  • \(y_p\) is a particular solution to the non-homogeneous ODE \(L[y]=g(x)\), satisfying the non-homogeneous equation.

Thus, the general solution to a non-homogeneous ODE is the sum of the general solution to the homogeneous ODE and a particular solution to the non-homogeneous ODE. This method is commonly employed in solving non-homogeneous linear ODEs and is considered a standard approach.

Substituting \((7,4,9)\) into it results in \[ A_{t t}+2 i s U A_t+\left[g s \tanh s h-s^2 U^2\right] A=-\frac{i s U \bar{p}}{\varrho \cosh s h}\text { (7.4.11) } \] Here \(\bar{p}(s)\) is the transform of \(p(x)\), the conditions: \[ A(s ; 0)=A_t(s ; 0)=0 \] put it all together and yield \[ A(s ; t)=\frac{i s U \bar{p}}{\varrho \cosh s h} \cdot\left\{\begin{array}{l} \frac{1}{s^2 U^2-g s \tanh s h} \\ +\frac{1}{2 \sqrt{g s \tanh s h}} \cdot \frac{e^{-i t(s U+\sqrt{g s \tanh s h})}}{s U+\sqrt{g s \tanh s h}} \\ -\frac{1}{2 \sqrt{g s \tanh s h}} \cdot \frac{e^{-i t(s U-\sqrt{g s \tanh s h})}}{s U-\sqrt{g s \tanh s h}} \end{array}\right\} \]

notes
  • A solution for the homogeneous form of (7.4.11) is presented:

\[\begin{aligned}& \Rightarrow \quad \lambda^2+2 i s U \lambda+g s \tanh s h-s^2 U^2=0 \\& \Rightarrow \quad \lambda=\frac{-2 i s U \pm \sqrt{-4 s^2 U^2-4\left(g s \tanh s h-s^2 U^2\right)}}{2 \times 1} \\& =-i s U \pm \sqrt{g s \tanh s h} \\& =-i(s U \pm \sqrt{gs\tanh sh }) \\& A^h=c_1 e^{-i t(s U+\sqrt{g s \tanh s h})}+c_2 e^{-i t(s U-\sqrt{g s \tanh s h})}\end{aligned}\]

  • particular solution

Sine the RHS of ODE is a constant with respect to \(t\), we can assume a constant particular solution \(A^p\), substitute \(A^p\) into (7.4.11)

\[\begin{aligned}& \left(g s \tanh sh-s^2 U^2\right) A^p=-\frac{i s U\bar{p}}{\rho \cosh sh} \\&A^p= -\frac{i s U \bar{p}}{\rho \cosh sh\left(gs\tanh{sh}-s^2 U^2\right)}\end{aligned}\]

  • Genevan solution

\[A=A^h+A^p\]

  • Applying initial condition

\[\begin{aligned}& A(s ; 0)=0 \\\Rightarrow & c_1+c_2+A^p=0 \\& A_t(s ; 0)=0 \\\Rightarrow & -i(s U+\sqrt{g s \tanh s h}) c_1-i(s U-\sqrt{gs \tanh {sh}}) c_2=0\end{aligned}\]

  • solving for \(c_1\) and \(c_2\)

\[\begin{aligned}& c_1=-\frac{i \bar{p} U s}{\rho \cosh s h}\left(\frac{1}{2 \sqrt{g s \tanh s h}} \frac{(-s U+\sqrt{g s \tanh s h})}{-s^2 U^2+g s \tanh s h}\right) \\& c_2=-\frac{i \bar{p} U \quad(s U+\sqrt{g s \tanh s h})}{2 \rho \cosh s h} \sqrt{g s \tanh s h\left(s U^2-g \tanh s h\right)}\end{aligned}\]

  • final solution \[ \begin{aligned} A&= -\frac{i \bar{p} U s}{\rho \cosh s h}\left(\frac{-s U+\sqrt{g s \tanh s h}}{2 \sqrt{g s \tanh s h}\left(-s^2 U^2+g s \tanh s h\right)}\right) e^{-i t(s U+\sqrt{g s \tanh h})} \\ &-\frac{i \bar{p} U s}{\rho \cosh s h}\left(\frac{s U+\sqrt{g s \tanh s h}}{2 \sqrt{g s \tanh s h}\left(s^2 U^2-g \tanh s h\right)}\right) e^{-i t(s U-\sqrt{g s \tanh s h})} \\ &+\frac{i s U \bar{p}}{\rho \cosh {sh}\left(gs \tanh{sh}-s^2 U^2\right)}\\ &\begin{aligned} = & -\frac{i \bar{p} U s}{\rho\cosh{sh}}\left[\frac{1}{s^2 U^2-g s \tanh s h}+\frac{1}{2\sqrt{g s \tanh s h}} \frac{e^{-i t(s U+\sqrt{g s \tanh s h})}}{s U+g s \tanh s h}\right. \\ & \left.-\frac{1}{2 \sqrt{g s \tanh s h}} \frac{e^{-i t(s U-\sqrt{g s \tanh s h})}}{s U-g s \tanh s h}\right] \end{aligned} \end{aligned} \]